On the linear independence of shifted powers
نویسندگان
چکیده
منابع مشابه
On the linear independence of shifted powers
We call shifted power a polynomial of the form (x− a)e. The main goal of this paper is to obtain broadly applicable criteria ensuring that the elements of a finite family F of shifted powers are linearly independent or, failing that, to give a lower bound on the dimension of the space of polynomials spanned by F . In particular, we give simple criteria ensuring that the dimension of the span of...
متن کاملon the effect of linear & non-linear texts on students comprehension and recalling
چکیده ندارد.
15 صفحه اولOn shifted products which are powers
Fermat gave the first example of a set of four positive integers {a1, a2, a3, a4} with the property that aiaj + 1 is a square for 1 ≤ i < j ≤ 4. His example was {1, 3, 8, 120}. Baker and Davenport [1] proved that the example could not be extended to a set of 5 positive integers such that the product of any two of them plus one is a square. Kangasabapathy and Ponnudurai [6], Sansone [9] and Grin...
متن کاملOn sets of integers whose shifted products are powers
Let N be a positive integer and let A be a subset of {1, . . . , N} with the property that aa′ + 1 is a pure power whenever a and a′ are distinct elements of A. We prove that |A|, the cardinality of A, is not large. In particular, we show that |A| ≪ (logN)2/3(log logN)1/3.
متن کاملShifted powers in binary recurrence sequences
Let {uk} be a Lucas sequence. A standard technique for determining the perfect powers in the sequence {uk} combines bounds coming from linear forms in logarithms with local information obtained via Frey curves and modularity. The key to this approach is the fact that the equation uk = xn can be translated into a ternary equation of the form ay2 = bx2n + c (with a, b, c ∈ Z) for which Frey curve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Complexity
سال: 2018
ISSN: 0885-064X
DOI: 10.1016/j.jco.2017.11.002